Alan Hubbard, Ph.D.

Publications

Zach Butzin-Dozier, Ph.D.; Sky Qiu; Alan Hubbard, Ph.D.; Seraphina Shi; Mark van der Laan, Ph.D.
Journal Article, 2024
Serge Ngekeng; Rasheedat Oke; Mark Yost; Fanny Dissak-Delon; Alan Hubbard, Ph.D.; Sandra I. McCoy; Ariane Christie; Steven Shoptaw; Alain Chichom-Mefire; Catherine Juillard
Journal Article, 2024
David McCoy, Ph.D.; Wenxin Zhang; Alan Hubbard, Ph.D.; Mark van der Laan, Ph.D.; Alejandro Schuler, Ph.D.
Journal Article, 2024
Zach Butzin-Dozier, Ph.D.; Yunwen Ji; Haodong Li; Jeremy Coyle; Seraphina Shi; Rachael Phillips, Ph.D.; Andrew Mertens; Romain Pirracchio, M.D., MPH, Ph.D, FCCM; Mark van der Laan, Ph.D.; Rena C Patel; John M Colford; Alan Hubbard, Ph.D.
Journal Article, 2024
Zach Butzin-Dozier, Ph.D.; Andrew Mertens; Sophia T. Tan; Douglas A. Granger; Helen O. Pitchik; Dora Il'yasova; Fahmida Tofail; Md. Ziaur Rahman; Ivan Spasojevic; Idan Shalev; Shahjahan Ali; Mohammed Rabiul Karim; Sunny Shahriar; Syeda Luthfa Famida; Gabrielle Shuman; Abul K. Shoab; Salma Akther; Md. Saheen Hossen; Palash Mutsuddi; Mahbubur Rahman; Leanne Unicomb; Kishor K. Das; Liying Yan; Ann Meyer; Christine P. Stewart; Alan Hubbard, Ph.D.; Ruchira Tabassum Naved; Kausar Parvin; Md. Mahfuz Al Mamun; Stephen P. Luby; John M. Colford Jr.; Lia C.H. Fernald; Audrie Lin
Journal Article, 2024
David McCoy, Ph.D.; Alejandro Schuler, Ph.D.; Alan Hubbard, Ph.D.; Mark van der Laan, Ph.D.
Journal Article, 2023
Job title: 
Professor of Biostatistics
Department: 
Biostatistics
Bio/CV: 

My research focuses on the application of statistics to population studies with particular expertise in semi-parametric models and the use of machine learning in causal inference, as well as applications in high dimensional biology. Applied work ranges from the molecular biology of aging, wildlife biology, social epidemiology, infectious disease and acute trauma. I am particularly interested in harnessing machine-learning algorithms and advances in semiparametric causal inference towards machines for optimizing the estimation of parameters related to causal inference/variable importance, with particular emphasis on discovering and estimating the impact of treatment rules. In addition, currently exploring the application of data-adaptive target parameter approaches to formalize asymptotics for exploratory data analysis, to allow for a lack of a priori specified hypotheses while still providing an estimation of meaningful parameters and estimators with predictable sampling distributions.

Research interests: 
  • Targeted Learning
  • Causal inference
  • Machine learning
  • Statistical issues in epidemiology
  • Precision medicine and public health
Role: